Any disturbance to utilities that are to remain. If said remaining utility is damaged, all pavement within the limits of disturbance not scheduled to be removed shall remain. During construction, contractor shall take steps to maintain adequate drainage. Upon initiation of demolition, contractor shall advise the engineer of record that demolition is about to begin. All demolition shall be performed by a qualified, licensed contractor in accordance with the specifications. The existing asphalt to be resurfaced shall be patched, filled and/or repaired. All erosion and sedimentation control measures shall be in place prior to demolition. The engineer of record shall be notified of any deviations from the plan information. It shall be the responsibility of the contractor to maintain all utilities that are not to be disturbed. The locations of existing utilities are not guaranteed. The contractor must verify the locations of existing utilities prior to excavation or demolition on-site. No utility line shall be extended or shortened. Any other material contained within this set are the property of Newell, Inc., Wayne, PA 19087, phone number 610-708-4816. The engineer of record must be notified of any variations from the dimensions and conditions shown on these drawings.
CONSTRUCTION NOTES:

SEE SHEET C10.0 FOR DETAILED ADA IMPROVEMENT CONSTRUCTION INFORMATION. CONTRACTOR TO ENSURE COMPLIANCE.

CONTRACTOR TO MATCH EXISTING PAVEMENT, CURB, AND SIDEWALK ELEVATIONS/LOCATIONS WHERE THE PROPOSED LONGITUDINAL SLOPES OF CURB RAMPS AND RAMPS SHALL NOT EXCEED 8.33%.

GUTTERS, AND CROSSWALKS CONTIGUOUS STRUCTURES, AS FIELD CONDITIONS DICTATE.

CONTRACTOR IS RESPONSIBLE FOR ALL SHORING REQUIRED DURING EXCAVATION AND SHALL BE PERFORMED IN SUCCESSION TO THE EARTHWORK.

SITE CLEARING SHALL INCLUDE THE LOCATION AND REMOVAL OF ALL UNDERGROUND TANKS, PIPES, VALVES, ETC. AND APPROVALS HAVE BEEN OBTAINED. NO CONSTRUCTION AND/OR FABRICATION SHALL BEGIN UNTIL THE CONTRACTOR HAS COMPLETED THE REQUIRED TESTS AND SERVICED THE PROPERLY PERMITTED UTILITIES.

TO 95% OPTIMUM DENSITY (AS DETERMINED BY MODIFIED PROCTOR METHOD).

SUBBASE MATERIAL FOR SIDEWALKS, OR ASPHALT SHALL BE FREE OF ORGANICS AND OTHER UNSUITABLE MATERIALS. SHOULD THERE BE ANY DEFICIENCIES FOUND, THE CONTRACTOR SHALL BE RESPO nsible FOR REMOVING AND REPLACING ALL SOFT, YIELDING OR UNSUITABLE MATERIALS AND REPLACING WITH MATERIALS MATCHING THE SPECIFICATIONS.

REGISTERED WITH THE STATE WHERE THE WORK IS PERFORMED, VERIFYING THAT ALL FILLED AREAS AND SUBGRADE AREAS MEET THE SPECIFICATIONS.

CLEANOUTS AND CURB BOXES WITHIN PAVED AREAS MUST HAVE TRAFFIC LOADING FRAMES AND COVERS. ALL UTILITY CONNECTIONS SHALL BE COORDINATED WITH THE APPROPRIATE UTILITY COMPANY.

ANY DEFICIENCIES FOUND SHOULD BE BROUGHT TO THE ATTENTION OF THE ENGINEER.

PUBLIC SAFETY AND/OR PROJECT COST MUST BE IDENTIFIED IMMEDIATELY TO THE ENGINEER OF RECORD IN CONJUNCTION WITH THE APPROPRIATE UTILITY COMPANY.

ALL UTILITIES AND STRUCTURES WITHIN THE PUBLIC RIGHT-OF-WAY OR EASEMENTS SHALL REMAIN, UNLESS ROOF AND GUTTER SYSTEMS SHALL BE FIELD VERIFIED BY TEST PIT PRIOR TO COMMENCEMENT OF CONSTRUCTION.

AND FEDERAL REGULATIONS AS WELL AS ANY REQUIREMENTS FROM THE RELEVANT UTILITY COMPANY.

SITE CONTRACTOR SHALL BE RESPONSIBLE TO COORDINATE THE DISCONNECTION, ABANDONMENT, RELOCATION LOCATIONS AND UTILITY SERVICE SIZING AND MATERIAL.

IN THE PROPOSED TRENCH DRAIN, PROPOSED STORM PIPE, PROPOSED SANITARY LATERAL AND CLEANOUT, PROPOSED SIDEWALK, PROPOSED EASEMENT.

EXISTING TREES.

EXISTING FLAG POLE.

EXISTING SPOT ELEVATIONS.

EXISTING CANOPY WITH COLUMN.

EXISTING OVERHEAD WIRE.

EXISTING HYDRANT.

EXISTING STORM SEWER WITH INLET AND MANHOLE.

LEGAL RIGHT-OF-WAY.
PLANTINGS SHALL BE PERMANENTLY MAINTAINED.
IN ACCORDANCE WITH 2010 ADA STANDARDS OR LATER REVISION.
A MINIMUM OF 4" OF SCREENED TOP SOIL MUST BE PLACED IN ALL PLANTING AREAS.
25% OF THE CROWN IS DEAD. ANY DEAD PLANT MATERIAL SHALL BE REPLACED AND INSTALLED ACCORDING
INSPECTION BETWEEN MAY 15 AND NOVEMBER 15. ANY PLANT MATERIAL 25% OR MORE OF WHICH IS DEAD
FINAL APPROVAL OF THE LANDSCAPE INSTALLATION BY THE TOWNSHIP ENGINEER AND UNTIL SATISFACTORY
LEVELS IN THE PARKING LOTS AND DRIVE AISLES.
NO SUBSTITUTIONS OF PLANT MATERIAL SHALL BE PERMITTED WITHOUT WRITTEN AUTHORIZATION FROM
THEIR RELATED DETAIL SHEETS, FOR ALL SITE IMPROVEMENTS OTHER THAN LANDSCAPING.
ENGINEER/LANDSCAPE ARCHITECT.
AND/OR ACTS OF GOD. IF COMPLETION OF LANDSCAPING WORK IS MATERIALLY DELAYED BEYOND THE DATE OF
SEQUENCING - FINAL GRADES MUST BE ESTABLISHED BEFORE PLANTING TREES AND SHRUBS. LAWNS MAY THEN
HARVEST SCHEDULING WITH DELIVERY IN QUANTITIES SUITABLY TIMED FOR IMMEDIATE PLANTING UPON ARRIVAL.
SHAPE DURING TRANSPORT. ANY BALLED AND BURLAPPED STOCK MUST BE FRESHLY DUG UNLESS OTHERWISE
FOR PROTECTION DURING TRANSPORTATION. STOCK SHALL BE BOUND TO PROTECT BRANCHES, BARK, AND OVERALL
PACKAGED MATERIALS - MATERIAL MUST BE DELIVERED IN ORIGINAL UNOPENED CONTAINERS DISPLAYING WEIGHT,
INSPECTION - THE ENGINEER/LANDSCAPE ARCHITECT RETAINS THE RIGHT TO INSPECT PLANTING MATERIALS AT
GENERAL - ALL MATERIAL MUST COMPLY WITH AMERICAN ASSOCIATION OF NURSERY NEW STANDARDS APPLICABLE TO
TOPSOIL - A SOIL ANALYSIS REPORT SHALL BE SUBMITTED AND SHOW THE PERCENTAGE OF EACH CONSTITUENT,
HUMUS - SHALL BE DECOMPOSED ORGANIC MATTER; PH SUITABLE FOR INTENDED USE.
QUANTITIES OF SUITABLE TOPSOIL ARE NOT AVAILABLE AT SITE, PROVIDE TOPSOIL FROM APPROVED
AND DISEASE.
MULCH IF NEEDED, AND SPRAY AS REQUIRED TO KEEP GROUND COVER AND SMALL PLANTS FREE OF INSECTS
AFTER PLANTING THROUGH THE WARRANTY PERIOD. PROVIDE THE FOLLOWING MAINTENANCE NECESSARY TO
INFESTATION AND DISEASE.
SUPPORT AND REPLANT TREES AND SHRUBS TO VERTICAL POSITION IF NECESSARY. RENEW WRAPPINGS
ANY DAMAGE RESULTING FROM USE OF HERBICIDES. REGRADE AND REPLANT AREAS TO CORRECT RUTTED,
SPECIES AND VARIETY. WATER REGULARLY AND AT SUCH TIMES AND RATES AS NECESSARY FOR
AT THE END OF THE MAINTENANCE PERIOD, SODDED LAWNS SHALL BE UNIFORM IN TEXTURE, DENSITY AND
APPLY SEEDING SLURRY WITH A HYDRAULIC SEEDER AT A RATE OF 4 LBS OF SEED PER 1000

DECIDUOUS TREE PLANTINGS

EVERGREEN PLANTING DETAIL

GROUND COVER/PERENNIAL PLANTING DETAIL

MAINTENANCE GUIDELINES BUFFER/SCREEN LANDSCAPE
A rock construction entrance.

- Topsoil removal before installing rock construction entrance.
- Extend rock over full width.

No. 7 Ga. tension wire fabric shall have the minimum properties as shown in Table 4.3 of the PA DEP Erosion Control Detail Sheet.

- Aluminum coated steel wire in accordance with ASTM-A-491, or galvanized No. 9 Ga.

- Fabric shall have the minimum properties as shown in Table 4.3 of the PA DEP Erosion Control Detail Sheet.

- Chain link to post fasteners spaced at 14 in. max. Use No. 9 Ga. aluminum wire or posts spaced at 10 ft. max. Use 2-1/2 in. dia heavy duty galvanized or aluminum posts.

- Super silt fence.

- Immediate after the inspection, dispose of accumulated sediment as well as all used bags.

- For each tributary drainage acre, (see manufacturer for anticipated settlement.)

- Storage may be provided by means of an excavated sump 12" deep extending 1 to 3 feet upslope.

- Notes:
 1. Silt fence or straw bale barrier shall be used on a rock filter outlet.
 2. A modified stone filter or filter fabric shall not exceed three socks in height and shall be stacked in successive layers as shown on the plan view.
 3. Socks shall be of larger diameter at the base of the trap and decrease in diameter for sediment accumulation shall not exceed 1/3 the total height of the trap.
 4. Socks shall be of larger diameter at the base of the trap and decrease in diameter for sediment accumulation shall not exceed 1/3 the total height of the trap.
 5. Minimum 8" AASHTO #1 earth fill.

- Standards for construction detail #3.1.

- Standards for construction detail #6.1.

- Plan view and isometric view.

- Notes:
 1. Concrete cap, which is optional, shall be minimum of 8" thick. Use 4,000 psi standard concrete.
 2. Soft and/or non-durable rock are not acceptable.
 3. Shales and similar stones used for "bridge" and filters shall have a moderately hard rock strength and be resistant to abrasion and degradation.
 4. Organic matter content.
 5. Maximum 5.0 dS/m (mmhos/cm) maximum.
 6. 1/4" dia. filter material.
 7. Standards for construction detail #4.1.

- Controlled non-discharge.

- Notes:
 1. Inlet filter bags shall be inspected on a weekly basis and after each runoff event. Bags shall be replaced when fulled with sediment.
 2. Inlet grate shall be maintained until permanent stabilization is completed or remain permanently.
 3. Berm on roadway shall be maintained until roadway is paved. Earthen berm in channel shall be maintained until permenantly.
 5. Berm shall be removed when it reaches 1/3 the height of the socks.

- Standard construction detail #8.1.

- Standard construction detail #8.15.

- Notes:
 1. Remove brush and woody debris.
 2. Concrete washout facilities should be inspected daily. Damaged or leaking event facilities shall be repaired immediately.
 3. Minimum 8" filter ring height.
 5. Filter tube.
 6. Inlet grate.

- Standard construction detail #4.2.

- Standard construction detail #6.10.

- Sump detail.

- Standard construction detail #4.16.

- Notes:
 1. All shop details must be submitted to this office for approval before proceeding with fabrication.
 2. All office must be notified of any variations from the dimensions and conditions shown on these drawings.
 3. This plan is for informational purposes only and is not to scale.

- Notes:
 1. All shop details must be submitted to this office for approval before proceeding with fabrication.
 2. All office must be notified of any variations from the dimensions and conditions shown on these drawings.
CONSERVATION DISTRICT.
DURING NON-GERMINATION PERIODS, MULCH MUST BE APPLIED AT RECOMMENDED RATES. CRUSHED TO RUNOFF AND INSTALLATION OF THE TEMPORARY CONSTRUCTION. THE INTENT OF THIS PROGRAM EROSION OF THE EXPOSED SITE SOILS DURING THE CONSTRUCTION AND PERMANENT LIFE PERIODS OF THE VISUAL INSPECTIONS

4. STABILIZED IMMEDIATELY. DURING NON-GERMINATING PERIODS, MULCH MUST BE APPLIED AT THE TEMPORARY STABILIZATION - ANY DISTURBED AREA ON WHICH ACTIVITY HAS CEASED SHALL BE APPROPRIATE.

ROCK FILTER OUTLET - SEDIMENT SHALL BE REMOVED WHEN ACCUMULATIONS REACH 1/3 THE HEIGHT OF NEEDED REPAIRS SHALL BE INITIATED IMMEDIATELY AFTER THE INSPECTION. DISPOSE ACCUMULATED 24 HOURS OF INSPECTION.

WATER WHICH ACCUMULATES IN THE OPEN TRENCH WILL BE COMPLETELY REMOVED BY PUMPING STABILIZATION OPERATIONS.

THE DAILY EXTENT OF TRENCHING SHOULD NOT EXCEED WHAT CAN BE BACK FILLED AND STABILIZED THREATEN POLLUTION.

THE NONCOMPLIANCE; AND THE DATE OR SCHEDULE OF DATES, AND IDENTIFYING REMEDIES FOR

SEEDING SHALL BE COMMON RYE GRASS APPLIED AT 45 LBS. PER ACRE. LIMING TO BE COOL PRIOR TO REACHING THE RECEIVING WATERWAYS.

BELOW THE CANOPY OF EXISTING VEGETATION (LAWN, TREES, ETC.), THE DISCHARGE WILL BE AFFORDED TIME TO ANTICIPATED E&S BMP RELATED CONSTRUCTION WASTES AND DISPOSAL PROCEDURES

5. MATERIAL, LARGE STONES, AND OTHER OBJECTIONABLE MATERIALS.

ANY DAMAGE THAT OCCURS IN WHOLE OR IN PART AS A RESULT OF BASIN OR TRAP DISCHARGE SHALL BE SEDIMENT BASINS AND/OR TRAPS SHALL BE KEPT FREE OF ALL CONSTRUCTION WASTE, WASH WATER, AND UNTIL SUCH RESTORATION IS COMPLETE.

ORDER TO ENSURE RAPID REVEGETATION OF DISTURBED AREAS, SUCH REMOVAL/CONVERSIONS ARE TO BE FOR AN INSPECTION PRIOR TO REMOVAL/CONVERSION OF THE E&S BMPS.

DISTURBED AREAS, THE OWNER AND/OR OPERATOR SHALL CONTACT THE LOCAL CONSERVATION DISTRICT OR THE DEPARTMENT.

ALL PUMPING OF WATER FROM ANY WORK AREA SHALL BE DONE ACCORDING TO THE PROCEDURE CLEAN OUT, REPAIR, REPLACEMENT, REGRADING, RE-SEEDING, RE-MULCHING AND RE-NETTING MUST BE DONE IN ACCORDANCE WITH THE APPROVED E&S PLAN. A COPY OF THE APPROVED DRAWINGS

260.1 ET SEQ., 271.1, AND 287.1 ET. SEG. NO BUILDING MATERIALS OR WASTES OR UNUSED BUILDING EXPOSED AREAS THAT ARE TO BE STABILIZED BY VEGETATION. EACH STOCKPILE SHALL BE PROTECTED IN THE SHOWN ON THE PLAN MAP(S) IN THE AMOUNT NECESSARY TO COMPLETE THE FINISH GRADING OF ALL TOPSOIL REQUIRED FOR THE ESTABLISHMENT OF VEGETATION SHALL BE STOCKPILED AT THE LOCATION(S)

CLEARING, GRUBBING, AND TOPSOIL STRIPPING SHALL BE LIMITED TO THOSE AREAS DESCRIBED IN EACH CONSERVATION DISTRICT OR BY THE DEPARTMENT PRIOR TO IMPLEMENTATION.

ALL EARTH DISTURBANCE ACTIVITIES SHALL PROCEED IN ACCORDANCE WITH THE SEQUENCE PROVIDED ON AT LEAST 3 DAYS PRIOR TO STARTING ANY EARTH DISTURBANCE ACTIVITIES, OR EXPANDING INTO AN AREA OF THOSE CHANGES FOR REVIEW AND APPROVAL AT ITS DISCRETION.

THIS IS A CRITICAL STAGE OF CONSTRUCTION THAT MUST BE SUPERVISED BY A LICENSED PROFESSIONAL

INSTALL WATER AND SANITARY TO THE BUILDING.

PLACE COMPOST FILTER SOCKS AS SHOWN ON THE EROSION AND SEDIMENTATION CONTROL PLAN.

FENCE, OR APPROVED EQUAL, PRIOR TO EARTH MOVING ACTIVITIES. INLETS, AND STORM DRAINS ARE FREE OF ANY DEBRIS AND SEDIMENT. RINSE SYSTEM, ENSURING RINSE WATER BACKFILL IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS. CONTRACTOR SHALL ENSURE THAT NO TOP AND BOTTOM.

THIS PROJECT SHALL BE COMPLETED IN ACCORDANCE WITH THE REQUIREMENTS OF THE REGULATIONS OF THE CONSERVATION DISTRICT.

NOTE: ANY ATTACHMENTS NOT IN SCALE MUST BE REVISED TO ACCORDANCE TO THE APPROVED DRAWINGS.
TYPICAL NYLOPLAST GRATE DETAIL

1. N.T.S. FOR EASY ACCESS HINGED GRATE

Ductile Iron

Reinforcement for Type 4 Inlet Box

1 - "S1" Bar Bottom (Inside Face of Inlet Box)

Scale: ½" = 1'

See Note 1

Max. (Typ.)

60" ‡

See Note 1

W ts = Slab Width

24"

See Note 1

Reinforcement for Type 5 Inlet Box

1 - "S2" Bar Bottom (Inside Face of Inlet Box)

Lts = Slab Length

Scale: ½" = 1'

Max. (Typ.)

45¼" †

45¼"

See Note 1

W ts = Slab Width

60" ‡

See Note 1

2'-0" Min.

Precast Top Slab with Inlet Opening Detail

See Note 1

Opening

Precast = 1½" Clear (Typ.)

Provide either a Shiplap or Keyed Joint between the Bottom of the Transition Slab and the Bottom of the Upper Inlet Box or Riser Section.

Provide a Transition Slab to transition a larger inlet box (lower section) to a smaller box size (upper section).

Provide either a Shiplap or Keyed Joint between the Bottom of the Transition Slab and the Bottom of the Upper Inlet Box.

Provide a Transition Slab to transition a larger inlet box (upper section) to a smaller box size (lower section).

Provide either a Shiplap or Keyed Joint between the Top of the Transition Slab and the Top of the Lower Inlet Box.

Provide a Transition Slab to transition a larger inlet box (lower section) to a smaller box size (upper section).

Provide a Transition Slab to transition a larger inlet box (upper section) to a smaller box size (lower section).

Provide either a Shiplap or Keyed Joint between the Top of the Transition Slab and the Top of the Lower Inlet Box.

Provide a Transition Slab to transition a larger inlet box (lower section) to a smaller box size (upper section).

Provide a Transition Slab to transition a larger inlet box (upper section) to a smaller box size (lower section).

Provide either a Shiplap or Keyed Joint between the Top of the Transition Slab and the Top of the Lower Inlet Box.

Provide a Transition Slab to transition a larger inlet box (lower section) to a smaller box size (upper section).

Provide a Transition Slab to transition a larger inlet box (upper section) to a smaller box size (lower section).

Provide either a Shiplap or Keyed Joint between the Top of the Transition Slab and the Top of the Lower Inlet Box.

Provide a Transition Slab to transition a larger inlet box (lower section) to a smaller box size (upper section).

Provide a Transition Slab to transition a larger inlet box (upper section) to a smaller box size (lower section).

Provide either a Shiplap or Keyed Joint between the Top of the Transition Slab and the Top of the Lower Inlet Box.

Provide a Transition Slab to transition a larger inlet box (lower section) to a smaller box size (upper section).

Provide a Transition Slab to transition a larger inlet box (upper section) to a smaller box size (lower section).

Provide either a Shiplap or Keyed Joint between the Top of the Transition Slab and the Top of the Lower Inlet Box.

Provide a Transition Slab to transition a larger inlet box (lower section) to a smaller box size (upper section).

Provide a Transition Slab to transition a larger inlet box (upper section) to a smaller box size (lower section).

Provide either a Shiplap or Keyed Joint between the Top of the Transition Slab and the Top of the Lower Inlet Box.

Provide a Transition Slab to transition a larger inlet box (lower section) to a smaller box size (upper section).

Provide a Transition Slab to transition a larger inlet box (upper section) to a smaller box size (lower section).

Provide either a Shiplap or Keyed Joint between the Top of the Transition Slab and the Top of the Lower Inlet Box.

Provide a Transition Slab to transition a larger inlet box (lower section) to a smaller box size (upper section).

Provide a Transition Slab to transition a larger inlet box (upper section) to a smaller box size (lower section).

Provide either a Shiplap or Keyed Joint between the Top of the Transition Slab and the Top of the Lower Inlet Box.

Provide a Transition Slab to transition a larger inlet box (lower section) to a smaller box size (upper section).

Provide a Transition Slab to transition a larger inlet box (upper section) to a smaller box size (lower section).

Provide either a Shiplap or Keyed Joint between the Top of the Transition Slab and the Top of the Lower Inlet Box.

Provide a Transition Slab to transition a larger inlet box (lower section) to a smaller box size (upper section).

Provide a Transition Slab to transition a larger inlet box (upper section) to a smaller box size (lower section).

Provide either a Shiplap or Keyed Joint between the Top of the Transition Slab and the Top of the Lower Inlet Box.

Provide a Transition Slab to transition a larger inlet box (lower section) to a smaller box size (upper section).

Provide a Transition Slab to transition a larger inlet box (upper section) to a smaller box size (lower section).

Provide either a Shiplap or Keyed Joint between the Top of the Transition Slab and the Top of the Lower Inlet Box.

Provide a Transition Slab to transition a larger inlet box (lower section) to a smaller box size (upper section).

Provide a Transition Slab to transition a larger inlet box (upper section) to a smaller box size (lower section).

Provide either a Shiplap or Keyed Joint between the Top of the Transition Slab and the Top of the Lower Inlet Box.

Provide a Transition Slab to transition a larger inlet box (lower section) to a smaller box size (upper section).

Provide a Transition Slab to transition a larger inlet box (upper section) to a smaller box size (lower section).

Provide either a Shiplap or Keyed Joint between the Top of the Transition Slab and the Top of the Lower Inlet Box.

Provide a Transition Slab to transition a larger inlet box (lower section) to a smaller box size (upper section).

Provide a Transition Slab to transition a larger inlet box (upper section) to a smaller box size (lower section).

Provide either a Shiplap or Keyed Joint between the Top of the Transition Slab and the Top of the Lower Inlet Box.

Provide a Transition Slab to transition a larger inlet box (lower section) to a smaller box size (upper section).

Provide a Transition Slab to transition a larger inlet box (upper section) to a smaller box size (lower section).

Provide either a Shiplap or Keyed Joint between the Top of the Transition Slab and the Top of the Lower Inlet Box.

Provide a Transition Slab to transition a larger inlet box (lower section) to a smaller box size (upper section).

Provide a Transition Slab to transition a larger inlet box (upper section) to a smaller box size (lower section).

Provide either a Shiplap or Keyed Joint between the Top of the Transition Slab and the Top of the Lower Inlet Box.

Provide a Transition Slab to transition a larger inlet box (lower section) to a smaller box size (upper section).

Provide a Transition Slab to transition a larger inlet box (upper section) to a smaller box size (lower section).

Provide either a Shiplap or Keyed Joint between the Top of the Transition Slab and the Top of the Lower Inlet Box.

Provide a Transition Slab to transition a larger inlet box (lower section) to a smaller box size (upper section).

Provide a Transition Slab to transition a larger inlet box (upper section) to a smaller box size (lower section).

Provide either a Shiplap or Keyed Joint between the Top of the Transition Slab and the Top of the Lower Inlet Box.

Provide a Transition Slab to transition a larger inlet box (lower section) to a smaller box size (upper section).

Provide a Transition Slab to transition a larger inlet box (upper section) to a smaller box size (lower section).

Provide either a Shiplap or Keyed Joint between the Top of the Transition Slab and the Top of the Lower Inlet Box.

Provide a Transition Slab to transition a larger inlet box (lower section) to a smaller box size (upper section).

Provide a Transition Slab to transition a larger inlet box (upper section) to a smaller box size (lower section).

Provide either a Shiplap or Keyed Joint between the Top of the Transition Slab and the Top of the Lower Inlet Box.

Provide a Transition Slab to transition a larger inlet box (lower section) to a smaller box size (upper section).

Provide a Transition Slab to transition a larger inlet box (upper section) to a smaller box size (lower section).

Provide either a Shiplap or Keyed Joint between the Top of the Transition Slab and the Top of the Lower Inlet Box.

Provide a Transition Slab to transition a larger inlet box (lower section) to a smaller box size (upper section).

Provide a Transition Slab to transition a larger inlet box (upper section) to a smaller box size (lower section).

Provide either a Shiplap or Keyed Joint between the Top of the Transition Slab and the Top of the Lower Inlet Box.

Provide a Transition Slab to transition a larger inlet box (lower section) to a smaller box size (upper section).

Provide a Transition Slab to transition a larger inlet box (upper section) to a smaller box size (lower section).

Provide either a Shiplap or Keyed Joint between the Top of the Transition Slab and the Top of the Lower Inlet Box.

Provide a Transition Slab to transition a larger inlet box (lower section) to a smaller box size (upper section).

Provide a Transition Slab to transition a larger inlet box (upper section) to a smaller box size (lower section).

Provide either a Shiplap or Keyed Joint between the Top of the Transition Slab and the Top of the Lower Inlet Box.

Provide a Transition Slab to transition a larger inlet box (lower section) to a smaller box size (upper section).

Provide a Transition Slab to transition a larger inlet box (upper section) to a smaller box size (lower section).

Provide either a Shiplap or Keyed Joint between the Top of the Transition Slab and the Top of the Lower Inlet Box.

Provide a Transition Slab to transition a larger inlet box (lower section) to a smaller box size (upper section).

Provide a Transition Slab to transition a larger inlet box (upper section) to a smaller box size (lower section).

Provide either a Shiplap or Keyed Joint between the Top of the Transition Slab and the Top of the Lower Inlet Box.

Provide a Transition Slab to transition a larger inlet box (lower section) to a smaller box size (upper section).

Provide a Transition Slab to transition a larger inlet box (upper section) to a smaller box size (lower section).

Provide either a Shiplap or Keyed Joint between the Top of the Transition Slab and the Top of the Lower Inlet Box.

Provide a Transition Slab to transition a larger inlet box (lower section) to a smaller box size (upper section).

Provide a Transition Slab to transition a larger inlet box (upper section) to a smaller box size (lower section).

Provide either a Shiplap or Keyed Joint between the Top of the Transition Slab and the Top of the Lower Inlet Box.

Provide a Transition Slab to transition a larger inlet box (lower section) to a smaller box size (upper section).

Provide a Transition Slab to transition a larger inlet box (upper section) to a smaller box size (lower section).

Provide either a Shiplap or Keyed Joint between the Top of the Transition Slab and the Top of the Lower Inlet Box.